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1 Introduction
Let G = (V,E) be a connected undirected graph with n = |V | and m = |E|. We denote as
G[T ] the subgraph induced on G by a subset of vertices T ⊆ V and as CG(T ) the collection of
all maximal connected components in G[T ]. The Safe Set Problem (SSP) amounts to finding
a minimum cardinality nonempty set of vertices S ⊆ V such that each component induced by
S has a cardinality not smaller than that of any adjacent component induced by U = V \ S.
We denote the vertices of S and the components of CG(S) as safe, the vertices of U and the
components of CG(U) as unsafe. The SSP can be formulated as

min
S⊆V

z = |S| (1)

|Si| ≥ |Uj | Si ∈ CG(S), Uj ∈ CG(V \ S) : E(Si, Uj) 6= ∅ (2)
S 6= ∅ (3)

where E(Si, Uj) = {{s, u} ∈ E : s ∈ Si, u ∈ Uj} is the set of edges between Si and Uj , and its
optimal value is denoted as the safe number s(G).

The literature provides a large number of recent theoretical results. The SSP is stronglyNP-
hard on general graphs [6], but also on planar and split graphs, and not approximable within a
factor better than 1.3606, unless P = NP [1]. It is polynomial on bounded-treewidth graphs
and interval graphs: trees admit an O(n5)-time algorithm. It is fixed-parameter tractable
with respect to neighbourhood diversity and to the size of the optimal solution [2]. The
Connected Safe Set Problem (CSSP), whose optimum is named the connected safe number
cs(G), additionally bounds the solution to consist of a single safe component [6]. A number
of contributions investigate the relation between cs(G) and s(G). While in general s(G) ≤
cs(G) ≤ 2s(G)− 1, the two values coincide for stars, paths and cycles [6], Cartesian products
of complete graphs [10] and a family of connected bipartite graphs characterised in [7]. Special
topologies allow not only to solve the SSP in polynomial time, but even to find solutions in
closed form, that is to determine specific subsets of vertices that provide a priori optimal
solutions. Ladder, sunlet and wheel graphs have been studied in this regard by [9].

This paper provides new results, based on the matching between lower bounds and feasible
solutions, for grids, complete bipartite graphs, and windmill graphs. Moreover, it investigates
the asymptotic structure of optimal solutions for random graphs. We prove that, for a suffi-
ciently large density, such instances become intrinsically easy as the size of the graph increases,
with an optimum equal to dn/2e, whereas they are generally unfeasible for small densities. This
explains the empirical behaviour observed in algorithmic studies [3, 4].

2 Cardinality-separated solutions
We here define a special class of solutions of the SSP and prove a simple lower bound on their
value. Since in several topologies at least one optimal solution falls within this special class,



the lower bound holds for the safe number s(G).

Definition 1 A solution of the SSP is cardinality-separated when all unsafe components have
cardinality not larger than all safe ones: Si ≥ Uj for all Si ∈ CG(S) and Uj ∈ CG(V \ S). By
construction, all such solutions are feasible.

Remark 1 All feasible solutions with a single safe or unsafe component are cardinality-separated.

Proof : If there is only one component of a given kind, the components of the other kind must
be adjacent to it, because they cannot be adjacent to each other and the graph is connected.
The feasibility constraint implies that feasible solutions are cardinality-separated. �

Lemma 1 Every cardinality-separated solution of the SSP that induces kS = |CG(S)| safe
components and kU = |CG(V \ S)| unsafe ones has value z ≥

⌈
n · kS

kS + kU

⌉
.

Proof : Summing inequalities |Si| ≥ |Uj | on all pairs (i, j) implies
kU∑
j=1

kS∑
i=1
|Si| ≥

kS∑
i=1

kU∑
j=1
|Uj |.

Since z =
kS∑
i=1
|Si| = n−

kU∑
j=1
|Uj |, we conclude that

kU∑
j=1

z ≥
kS∑
i=1

(n− z)⇒ kUz ≥ kSn− kSz. �

Corollary 1 Given a complete graph Kn, any subset of dn/2e vertices is an optimal solution
of the SSP.

Proof : As in a complete graph all safe vertices are adjacent and all unsafe vertices are
adjacent, kS = kU = 1, and s(G) ≥ dn/2e. However, any subset S of dn/2e vertices is a
feasible solution, since it is connected and larger than the unsafe set V \ S. �

3 Random graphs
Corollary 1 admits an asymptotic generalization in probability to random graphs. We remind
that in a random graph G (n, p), as defined by Gilbert [8], there are n vertices and every
unordered pair of vertices {u, v} falls within the edge set E independently with probability p.
We also remind that a sequence of events depending on an integer parameter n occurs “with
high probability” when its probability converges to 1 as n grows to +∞.

Theorem 1 Let G (n, p) be a Gilbert random graph with p = logn+cn

n . When lim
n→+∞

cn = −∞,
the SSP is infeasible with high probability; when lim

n→+∞
cn = +∞, any subset of dn/2e vertices

is an optimal solution with high probability.

Proof : A Gilbert graph with n vertices, p = logn+cn

n and lim
n→+∞

cn = −∞ is disconnected
with high probability [8]. The SSP is unfeasible on such graphs.

On the other hand, when lim
n→+∞

cn = −∞, the graph is connected with high probability.
Given a connected instance, any subset S of dn/2e vertices induces a graph G[S] that is a
Gilbert graph G (dn/2e , p), as the edges are still independently distributed with probability p.
Therefore, G[S] is also connected with high probability. Since S forms a single safe component
and every unsafe component has cardinality |Uj | ≤ |V \ S| = bn/2c ≤ |S|, S is feasible.

Consider any smaller set of vertices S (with |S| = n′ < dn/2e). The unsafe set induces a
graph G[V \S] that is a Gilbert graph G (n− n′, p), once again connected with high probability.
Therefore, S induces on the original graph a single unsafe component of cardinality |U | =
n − n′ ≥ dn/2e, which makes S unfeasible. Consequently, any subset of dn/2e vertices is an
optimal solution with high probability. �

The above finding explains the experimental results of [4], where nearly all random graphs
with n ≥ 150 and p ∈ {0.1, 0.2, 0.3, 0.4} exhibit best known solutions with z = dn/2e. Theorem
1 suggests that the interesting instances of the SSP are sparse, but with a topological structure
that keeps them connected. In the following we consider some classes of instances with very
strong structures.



4 Deterministic graphs with special topologies
A grid graph L(r, c), with rows indexed from 1 to r and columns from 1 to c, is the Cartesian
product of two path graphs P (r)�P (c). In the following, we first prove a lower bound on s(G),
then we build a feasible solution of the CSSP, showing that the two bounds have the same
asymptotic behaviour.

Proposition 1 The safe number of a grid graph G = L(r, c) with c = Θ(r) is s(G) ∈ Ω(r 4
3 ).

Proof : Given an optimal solution S of the SSP, let {U1, . . . , UkU
} be the unsafe components

induced by G[V \ S], sorted by nonincreasing cardinalities, so that |S| ≥ |U1| ≥ . . . ≥ |UkU
|.

We extend G to G′ = L(r+ 2, c+ 2), with vertex set V ′ and edge set E′, adding row indices 0
and r+ 1 and column indices 0 and c+ 1. For each unsafe component Ui, we denote the subset
of adjacent vertices in V ′ as its frontier Fi = {v ∈ V ′ \ Ui : ∃u ∈ Ui : {v, u} ∈ E′}. Notice
that any path from a vertex of Ui to V ′ \V necessarily intersects Fi, in particular the paths in
which all vertices have the same row index (horizontal) or column index (vertical).

We first prove that |Fi| ≥
√
|Ui|. Denoting the vertices as index pairs (ρ, γ), let rmi =

min
(ρ,γ)∈Ui

ρ, rMi = max
(ρ,γ)∈Ui

ρ, cmi = min
(ρ,γ)∈Ui

γ and cMi = max
(ρ,γ)∈Ui

γ be the extreme values, respectively,

of the row and the column indices for the vertices of Ui. Then, let bi = cMi − cmi + 1 and
hi = rMi − rmi + 1. Since Ui is connected, it contains a path with at least bi vertices (ρ, γ),
one for each different value of γ between cmi and cMi . Each vertex (ρ, γ) corresponds to at
least two different vertices (r′, γ) and (r′′, γ) ∈ Fi, such that rmi ≤ r′ < ρ < r′′ ≤ rMi .
Therefore, |Fi| ≥ 2bi. Analogously, |Fi| ≥ 2hi. As a consequence, |Fi| ≥ (bi + hi) ≥

√
bihi, but

bihi ≥ |Ui| ⇒ |Fi| ≥
√
|Ui|.

The vertices of the frontier subsets are either safe or belong to the sides of the grid:
⋃kU
i=1 Fi ⊆

S ∪ (V ′ \V \{(0, 0), (0, c+ 1), (r+ 1, 0), (r+ 1, c+ 1)})⇒ |
⋃kU
i=1 Fi| ≤ |S|+ 2(r+ c). Though in

general they overlap, each vertex belongs to at most 4 different subsets:
∑kU
i=1 |Fi| ≤ 4|

⋃kU
i=1 Fi|,

which implies that |S| ≥ 1/4
∑kU
i=1
√
|Ui| − 2(r + c).

Now, let n1 = |U1| for the sake of briefness. Since |Ui| ≤ n1 for all i, there is always
a partition of the unsafe component indices {1, . . . , kU} into ` disjoint groups Il such that
n1 ≤

∑
k∈Il
|Ui| < 2n1 for l = 1, . . . , ` − 1 and

∑
k∈I`
|Ui| < n1. We minorize the total

cardinality of each group of components by observing that
∑
i∈Il

√
|Ui| ≥

√∑
i∈Il
|Ui| ≥

√
n1

for all l < `. Then, we minorize the number of groups: ` ≥
∑kU

i=1 |Ui|
2n1

. Therefore,
∑kU
i=1
√
|Ui| ≥∑kU

i=1 |Ui|
2n1

√
n1 = rc−|S|

2√n1
≥ rc

4√n1
, as |S| ≤ rc

2 in any optimal solution [6]. Finally, |S| ≥ n1 implies
|S| ≥ max

(
n1,

rc
16√n1

− 2(r + c)
)
. Assuming that c ∈ Θ(r), it is |S| ∈ Ω(max(n1,

r2
√
n1
− r)). If

n1 ∈ Ω(r 4
3 ), the thesis trivially holds. If, on the contrary, n1 ∈ O(r 4

3 ), then (r2/
√
n1 − r) ∈

Ω(r2/r
2
3 − r) = Ω(r 4

3 ), which is again the thesis. �

Proposition 2 The connected safe number of a grid graph G = L(r, c) with c ∈ Θ(r) is
cs(G) ∈ O(r4/3).

Proof : Let the safe set S include all vertices with row and column index multiple of l =
d 3
√
rce. This forms a connected grid of |S| = c

⌊
r
l

⌋
+ r

⌊
c
l

⌋
−
⌊
r
l

⌋ ⌊
c
l

⌋
≤ 2rc

l vertices. The
unsafe vertices form components that are squares or rectangles with at most l − 1 rows and
columns. S is feasible when c

⌊
r
l

⌋
+ r

⌊
c
l

⌋
−
⌊
r
l

⌋ ⌊
c
l

⌋
≥ (l − 1)2, that can be strengthened to

(c − 1)( rl − 1) + (r − 1)( cl − 1) ≥ l2. As r and c increase, the inequality is asymptotically
verified. Since |S| ≤ 2rc/ 3

√
rc, assuming c ∈ Θ(r), this implies |S| ∈ O(r 4

3 ). �

Corollary 2 Given a grid graph G = L(r, c) with c ∈ Θ(r), both s(G) and cs(G) ∈ O(r4/3).

Bipartite graphs have been discussed in [1], proving the NP-hardness of the SSP for planar
graphs of degree ≤ 7, and in [5], stating that balanced complete graphs have optimal connected
solution of value cs(Kn/2−1,n/2+1) = n/2. We here consider general complete bipartite graphs.



Proposition 3 The SSP on a complete bipartite graph Ka,n−a has an optimal solution of value
min (a, n− a) composed by the vertices of the less numerous shore.

Proof : The best solution including all the vertices on a shore consists exactly of the less
numerous shore, and its cost is ≤ dn/2e. Any other solution has unsafe vertices on both
shores, that are connected to each other and adjacent to all other vertices. Hence, there is a
single unsafe component and z ≥

⌈
n kS

kS+1

⌉
≥ dn/2e. �

A windmill graph Wd(k, h) consists of h ≥ 2 copies of the complete graph Kk and a central
vertex linked to all other vertices.

Proposition 4 The safe number of a windmill graph Wd(k, h) is s(G) =
⌈
hk+1
h+1

⌉
.

Proof : Since all vertices are adjacent to the central one, if this is unsafe, there is a single
unsafe component, and kS ≤ n safe components (the vertices in each complete subgraph are
adjacent to each other). Therefore, z ≥

⌈
(hk + 1) kS

kS+1

⌉
≥ d(hk + 1)/2e.

If the central vertex is safe, there is a single safe component and kU ≤ n unsafe ones.
Therefore, z ≥

⌈
hk+1
1+h

⌉
=
⌈
k − k−1

1+h

⌉
= k −

⌊
k−1
1+h

⌋
. This bound can be hit by setting a

safe central vertex,
⌈
k−1
h+1

⌉
vertices in (k − 1) − (h + 1)

⌊
k−1
h+1

⌋
complete subgraphs and

⌊
k−1
h+1

⌋
vertices in the other complete subgraphs. In fact, |S| = 1 +

⌈
k−1
h+1

⌉ [
(k − 1)− (h+ 1)

⌊
k−1
h+1

⌋]
+⌊

k−1
h+1

⌋ [
h− (k − 1) + (h+ 1)

⌊
k−1
h+1

⌋]
= 1 + (k− 1)− (h+ 1)

⌊
k−1
h+1

⌋
+ h

⌊
k−1
h+1

⌋
= k−

⌊
k−1
h+1

⌋
, and

the unsafe components have cardinality ≤ k −
⌊
k−1
h+1

⌋
. �
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